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Abstract 

 
Richardson Extrapolation is a powerful computational tool which can successfully be used in the 

efforts to improve the accuracy of the approximate solutions of systems of ordinary differential 

equations (ODEs) obtained by different numerical methods (including here combined numerical 

methods consisting of appropriately chosen splitting procedures and classical numerical methods). 

Some stability results related to two implementations of the Richardson Extrapolation (Active 

Richardson Extrapolation and Passive Richardson Extrapolation) are formulated and proved in this 

paper. An advanced atmospheric chemistry scheme, which is commonly used in many well-known 

operational environmental models, is applied in a long sequence of experiments in order to 

demonstrate the fact that  

(a) it is indeed possible to improve the accuracy of the numerical results when the Richardson 

Extrapolation is used (also when very difficult, badly scaled and stiff non-linear systems of 

ODEs are to be treated),  

(b) the computations can become unstable when the combination of the Trapezoidal Rule and the 

Active Richardson Extrapolation is used,  

(c) the application of the Active Richardson Extrapolation with the Backward Euler Formula is 

leading to a stable computational process, 

(d) experiments with different algorithms for solving linear systems of algebraic equations are very 

useful in the efforts to select the most suitable approach for the particular problems solved and  

(e) the computational cost of the Richardson Extrapolation is much less than that of the underlying 

numerical method when a prescribed accuracy has to be achieved.  
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1. Richardson Extrapolation 
 

Consider the classical initial value problem for systems of s ( 1s  ) ordinary differential equations 

(ODEs): 

 

  ,y)a(y,ba,b,at,)y,t(f
dt

dy
)1( 0  

 

where the unknown function   s
b,a:y   is continuously differentiable, while right-hand-side 

function )y,t(f  is continuous. However, it is often necessary to introduce much more restrictive 

assumptions when numerical methods of order p  are used in the treatment of (1). In such a case it 

is necessary to assume that the two functions y  and f  are continuously differentiable up to orders 

1p   and p  respectively. It is also worthwhile to emphasize the fact that many mathematical 

models arising in different fields of science and engineering can be represented (after discretization 

of the spatial derivatives) by systems of ODEs of type (1); see, for example, Hundsdorfer and 

Verwer (2003), Lambert (1991), Zlatev (1995) or Zlatev and Dimov (2006). 

 

Richardson Extrapolation is sometimes used either (a) in an attempt to improve the accuracy of the 

calculated approximations or (b) to control automatically the accuracy that is achieved by the 

selected numerical method.  

 

 

1.1. Using Richardson Extrapolation to improve the accuracy of the approximate solution 

 

Richardson Extrapolation can be introduced in the following way. Assume that  b,atn  is a 

given time-point and that )t(y n  is the value of the exact solution of (1) at ntt  . Assume also that 

two approximations of )t(y n  have been obtained by applying a numerical method of order p  and 

by using two time-stepsizes h  and h5.0 . More precisely, starting from a time-point 1ntt  , 

where htt n1n  , the two approximations are calculated by using first one large time-step and, 

after that, two small time-steps. Denoting these two approximations with nz  and nw  respectively, 

we can write:  

 

 1pp

nn hOKhz)t(y)2(
  

 

and 

 

   ,hOKh5.0w)t(y)3(
1pp

nn

  

 

where K  is some quantity depending on the numerical method used to calculate nz  and nw . 

Eliminating the terms containing K  from (2) and (3) gives: 

 

.)h(O
12

zw2
)t(y)4(

1p

p

nn

p

n





  
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Denote 

 

.
12

zw2
y)5(

p

nn

p

n



  

 

It is clear that the approximation ny , being of order 1p  , will in general be more accurate than 

both nw  and nz  (at least when the stepsize h  is sufficiently small). Thus, Richardson 

Extrapolation can be used in the efforts to improve the accuracy of the approximate solutions. 

 

 

1.2. Using Richardson Extrapolation to control the stepsize 

 

Richardson Extrapolation can also be used in an attempt to evaluate the leading term of the global 

truncation error made in the calculation of the approximation nw . Neglect the terms  1p
hO

  in (2) 

and (3). Subtract (3) from (2). The result is: 

 

 
 12h

zw2
K)6(

pp

nn

p




 . 

 

Substitute K  from (6) in (3): 

 

,)h(O
12

zw
w)t(y)7(

1p

p

nn

nn





  

 

which means that the quantity nERROR :  

 

12

zw
ERROR)8(

p

nn

n



  

 

can be used as an evaluation of the leading term of the global truncation error of the approximation 

nw  when the stepsize h  is sufficiently small. Assume that the desired accuracy of the approximate 

solution of (1) is determined by some prescribed in advance error tolerance parameter TOL . If the 

evaluation of the global error computed by using (8) differs substantially from TOL , then 

nERROR  can also be used to determine a new stepsize 
newh , which will hopefully give an error 

closer to TOL. Such an automatic control of the stepsize is usually carried out by applying the 

following formula: 

 

,h
TOL

ERROR
h)9( p n

new    

 

where   is some precaution parameter ( 9.0  is used in many well-known codes for solving 

systems of ODEs by automatic control of the stepsize; see, for example Shampine and Gordon, 

1975). Thus, the Richardson extrapolation can be applied in codes for solving systems of ODEs 

with automatic stepsize control. 
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1.3. Some remarks about the Richardson Extrapolation 

 

The following three remarks provide some additional information about the Richardson 

Extrapolation. 

 

Remark 1: The device sketched above was first extensively been used by L. F. Richardson, 

Richardson (1927), who called it "the deferred approach to the limit". It is often used in different 

areas of numerical analysis and applied mathematics (see, for example, Henrici (1968), 

Hundsdorfer and Verwer (2003) and Lambert (1991).       ■ 

 

Remark 2: The Richardson extrapolation does not depend too much of the particular numerical 

method. It can be used both when classical numerical algorithms are applied in the solution of 

differential equations and when more advanced numerical methods which are combinations of 

splitting procedures and classical numerical algorithms are devised and used. Two issues are 

important: (a) the large time-step and the two small time-steps must be handled by using the same 

numerical method and (b) the order p  of the selected method should be known.     ■ 

 

Remark 3: The version of the Richardson Extrapolation described in this section is perhaps the 

simplest one. Some more complicated versions of this device can be found in Faragó (2008).        ■ 

 

 

2. Two ways of implementing the Richardson Extrapolation 
 

The device, which was described in the previous section, can be implemented in two different 

ways. The first implementation will be called Active Richardson Extrapolation, while the name 

Passive Richardson Extrapolation will be used for the second one. In the Active Richardson 

Extrapolation the hopefully improved approximation ny  is used in the calculation of 1nz   and 

1nw   at every time-step n  ( ,2,1n  ). In the Passive Richardson Extrapolation, the values of nz  

and nw  are used to calculate 1nz   and 1nw   (again at every time-step n , ,2,1n  ). This means 

that the calculated at a given time-step approximation ny  is never used in the further computations 

when the Passive Richardson Extrapolation is selected. The two implementations of the Richardson 

Extrapolation are depicted in Fig. 1 and Fig. 2. 

 

It is intuitively clear that the incorporation of the improved values ,y,y 21  in the computations 

may lead to more accurate results. Extensive experiments indicate that very often this is not the 

case. However, if the problem is very stiff and if some of the components of the solution vector 

)t(y  are quickly varying in some parts of the time-interval, then the Active Richardson 

Extrapolation may sometimes produce better results.  

 

On the other hand, while it is nearly clear that the Passive Richardson Extrapolation will produce 

stable numerical results when the underlying algorithm is stable (a rigorous proof is given in 

Theorem 2), the same conclusion cannot be drawn when the Active Richardson Extrapolation is 

used. In other words, the Active Richardson Extrapolation may be unstable also when the 

underlying numerical algorithm is stable. It is proved in Section 5 (Theorem 3) that the Active 

Richardson Extrapolation may produce unstable computations when it is combined with the well-
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known Trapezoidal Rule (the Trapezoidal Rule is described in many text books treating the topic of 

the numerical solution of systems of ODEs; see, for example, Lambert, 1991).  

 

 

Figure 1: Schematic diagram of the Passive Richardson Extrapolation. 

 

 

Figure 2: Schematic diagram of the Active Richardson Extrapolation. 

 

 

3. Dahlquist’s test-problem and stability functions 
 

It is desirable to preserve the stability properties of the selected numerical method for solving 

systems of ODEs when this method is combined with the Richardson Extrapolation. The 

preservation of the stability properties will be discussed both in this section and in the following 

three sections. 

 

The stability studies related to the numerical methods for solving systems of ODEs are usually 

based on the application of the famous test-problem: 

 

    .0Re,C,Cy,,0t,y
dt

dy
)10(   

 

This test-problem was introduced by G. Dahlquist in 1963 (Dahlquist, 1963) and used in several 

thousand papers after that. The importance of (10) is emphasized in many publications. For 

example, Hundsdorfer and Verwer declare that "in spite of its simplicity this test-equation is of 

major importance for predicting the stability behavior of numerical ODE methods" (Hundsdorfer 

and Verwer, 2003, p. 144). 
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Consider the class of the one-step numerical methods for solving systems of ODEs (see, for 

example, Henrici, 1968). The approximation ny  of )t(y n  calculated by an arbitrary one-step 

method can be expressed as a function of 1ny   for any value of n . The Runge-Kutta methods 

(these methods are discussed in detail, for example, in Butcher, 2003) belong to the class of one-

step methods. 

 

The following recurrent relation can be obtained (Hundsdorfer and Verwer, 2003) when many one-

step methods are used in the solution of (10): 

 

,y)(Ry)11( 1nn   

 

where h  and )(R   is a polynomial if an explicit numerical method is used and a rational 

function if the method is implicit. Very often )(R   is called the stability function of the method 

(Hundsdorfer and Verwer, 2003, p. 37). Since   
0

n

n yRy  , it is clear that the computations 

will be stable when (10) is solved if  

 

.1)(R)12(   

 

The stability functions of three well-known and commonly used numerical methods for solving 

systems of ODEs are given below. If the Trapezoidal Rule: 

 

 )y,t(f)y,t(fh5.0yy)13( nn1n1n1nn    

 

is applied in the solution of (10), then the stability function is given by 

 

  .
5.01

5.01
R)14( TR




  

 

If the Backward Euler Formula: 

 

 
nn1nn y,tfhyy)15(    

 

is applied in the solution of (10), then the stability function is given by 

 

  .
1

1
R)16( BE


  

 

If the  -method: 

 

  )y,t(f)y,t(f1hyy)17( nn1n1n1nn    

 

is applied in the solution of (10), then the stability function is given by 
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 
 

.
1

11
R)18(




  

 

The Trapezoidal Rule and the Backward Euler Formula are special cases of (17) obtained by using 

5.0  and 1  respectively. 

 

It should be mentioned here that the stability function from (12) can very often be represented as a 

ratio of two polynomials: 

 

.
)(Q

)(P
)(R)19(




  

 

This representation will be used in the following sections. 

 

 

4. Two Stability Definitions 
 

Several well-known stability definitions are relevant when stiff systems of ODEs are solved 

numerically (see Burrage, 1992, Butcher, 2003, Hairer and Wanner, 1991, or Lambert, 1991). Two 

of them will be used in the remaining part of this paper. 

 

Definition 1: Consider the set S  containing all values of  i   with 0  for which (12) is 

satisfied. If  0,iCS   , then the method with stability function )(R   is called 

A-stable.      ■ 

 

It can be proved by using the maximum modulus theorem (about the maximum modulus theorem 

see, for example, Wylie, 1975) that Definition 1 is equivalent to the following statement (Hairer 

and Wanner, 1991). 

 

Theorem 1: A numerical method with stability function )(R   is A-stable if and only if 

 

 ofvaluesrealallfor1)i(R)20(  

 

and  

 

.0whenfunctionanalyticis)(R)21(         ■ 

 

Definition 2: A numerical method with a stability function )(R   is called L-stable if it is A-stable 

and the relationship: 

 

   0Rlim)22( 


 

 

holds.      ■ 
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5. Is the Richardson Extrapolation Stable if the Underlying Method is Stable? 
 

The answer to the above important question depends on the implementation of the Richardson 

Extrapolation (see Section 2). As mentioned above, for the Passive Richardson Extrapolation the 

answer is always positive, while the Active Richardson Extrapolation might become unstable. More 

precisely, the following two theorems can be formulated and proved: 

 

Theorem 2: Assume that the underlying method is either A-stable or L-stable. Assume that the 

Passive Richardson Extrapolation is used. Then the combined method will be stable when (10) is 

solved. 

 

Proof: It is clear, see Fig. 1, that the calculation of the sequences }z{ n  and }w{ n , ,2,1n  , is a 

stable process when (10) is solved (because the underlying numerical method is assumed to be 

stable). It is also clear that the calculation of }y{ n  by using (5) is stable, because at every time-step 

n  only a simple linear combination of the two values nz  and nw  is used to calculate ny . 

Moreover, the calculation of any }y{y nn   will not affect the stability of the combined method 

because the value of ny  does not participate in the further computations (see again Fig. 1). This 

proves the theorem.       ■ 

 

Theorem 3: The computations will in general be unstable when the Trapezoidal Rule is used 

together with the Active Richardson Extrapolation. 

 

Proof: Since the Trapezoidal Rule is a second-order method, equation (5) with 2p   can be 

written as  

 

,
3

zw4
y)23( nn

n


   

 

where  

 

1nn y
5.01

5.01
z)24( 












  

 

and (since two consecutive small time-steps with stepsize h5.0  are to be carried out) 

 

.y
25.01

25.01
w)25( 1n

2

n 











  

 

Substitute the expressions (24) and (25) in (23). The result is: 

 

.y
5.01

5.01

3

1

25.01

25.01

3

4
y)26( 1n

2

n 






































  
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The last equality can be represented in the form  
1nRICHTRn yRy    with 

 

  .
5.01

5.01

3

1

25.01

25.01

3

4
R)27(

2

RICHTR 
























  

 

Equality (27) can be rewritten as 

 

  .

5.0
1

5.0
1

3

1

0625.0
5.01

0625.0
5.01

3

4
R)28(

2

2

RICHTR





















  

 

It can easily be seen now that the following relation holds: 

 

  
3

5
Rlim)29( RICHTR 


 

 

and, thus, RICHTRR   will be greater than one when   is sufficiently large, which means that the 

computational process will be unstable when the problem solved is stiff. This completes the proof 

of the theorem.      ■ 

 

Remark 4: The Implicit Mid-point Rule (see, for example, Lambert, 1991) will in general also 

produce unstable results when it is combined with the Richardson Extrapolation. Indeed, for linear 

problems the Implicit Mid-point Rule and the Trapezoidal Rule coincide. Thus, the stability 

function of the Implicit Mid-point Rule is given by (14); i.e. it is the same as the stability function 

of the Trapezoidal Rule. The conclusion is that the stability properties of the Implicit Mid-point 

Rule and the Trapezoidal Rule are the same.      ■ 

 

Remark 5: The assertions of Theorem 2 and Theorem 3 are also stated in Dahlquist (1963). These 

two theorems are given here in order both to facilitate the reading of this paper and, what is even 

more important, to emphasize the fact that one must be careful when the Active Richardson 

Extrapolation is used.          ■ 

 

Theorem 3 and Remark 4 show that in general the application of the Active Richardson 

Extrapolation may cause instability of the computational process. The question is whether it is 

possible to ensure stability when the Active Richardson Extrapolation is combined with some 

particular numerical methods. An answer to this question will be given in the next section. 

 

 

6. Active Richardson Extrapolation applied with the Backward Euler Formula 
 

Theorem 4: The combined method consisting of the Active Richardson Extrapolation and the 

Backward Euler Formula is L-stable.  
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Proof: It follows from Theorem 1 and Definition 2 that in order to prove the assertion of this 

theorem it is necessary (a) to derive the stability function )(R)(R RICHBE  
 of the combined 

numerical method (the Active Richardson Extrapolation + the Backward Euler Formula) and (b) to 

show that the relationships (20), (21) and (22) hold. This means that the theorem can be proved in 

four steps. The first step will be the derivation of the stability function of the combined numerical 

method. The validity of each of the three relationships mentioned above has to be established in the 

next three steps. 

 

(A) Stability function of the combined method: It is clear that performing one large step and two 

small steps with the Backward Euler Formula starting with the approximation 1ny   will result in 

the following formula: 

 

,y
1

1

5.01

1
2y)30( 1n

2

n 


































  

 

which means that the stability function of the combined method is given by 

 

 
.

1

1

5.01

2
)(R)31(

2 



  

 

The last equality is equivalent to 

 

   
   




15.01

5.0112
)(R)32(

2

2

 

 

and the polynomials )(P   and )(Q   from (19) are given by 

 

   25.0112)(P)33(   

 

and 

 

   .15.01)(Q)34(
2

  

 

The relationships (32), (33) and (34), which were derived above, will play a key role in the proof of 

the following three steps. 

 

(B) Verification of (20): Equality (20) alone is equivalent to the requirement that the method is 

stable on the imaginary axis (Hairer and Wanner, 1991). It is shown in Hairer and Wanner (1991) 

that the stability of the numerical method on the imaginary axis is ensured if 

 

0)(E)35(   

 

for all real values of  , where )(E   is defined by 
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      .)i(PiPiQiQ)(E)36(   

 

Consider the first term in the right-hand-side of (36). Successful transformations of this term are 

given below. 

 

          ,i15.0i1i15.0i1iQiQ)37(
22

   

 

          ,i1i15.0i15.0i1iQiQ)38(
2

  

 

       ,125.01iQiQ)39(
222   

 

      ,115.00625.0iQiQ)40(
224   

 

    .15.15625.00625.0iQiQ)41(
246   

 

Similar transformations of the second term in (36) are represented below. 

 

          ,5.0i1i125.0i1i12)i(P)i(P)42(
22

  

 

         

    ,5.0i15.0i1

5.0i1i12i15.0i12i1i14)i(P)i(P)43(

22

22




 

 

           
     ,5.0i15.0i1

5.0i15.0i1i25.0i15.0i1214)i(P)i(P)44(

2

22222




 

 

  ,25.014444)i(P)i(P)45(
22222   

 

,0625.05.01)i(P)i(P)46(
422   

 

.15.10625.0)i(P)i(P)47(
24   

 

Substitute the expression in the right-hand-sides of (41) and (47) in (36). The result is: 

  

   ,15.10625.015.15625.00625.0)(E)48(
24246   

 

which is equivalent to 

 

.5.00625.0)(E)49(
46   

 

The right-hand-side of (49) is clearly non-negative for any value of  . This means that (35) is 

satisfied and, therefore, the combined method (the Richardson Extrapolation + the Backward Euler 

Formula) is stable on the imaginary axis.  
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(C) Verification of (21): )(R   is a ratio of two polynomials, )(P   and )(Q  ; see (19). It is well-

known that polynomials are analytic functions and a ratio of two polynomials is analytic function in 


C  if the denominator )(Q   has no roots in 
C . The roots of the denominator )(Q   of the 

rational function )(R   are 11   (single root) and 23,2   (double root). This means that )(R   

is analytic in 
C  and, therefore, (21) holds. 

 

(D) Verification of (22): The results proved in (B) and (C) show that the combined method based 

on the use of the Richardson Extrapolation with the Backward Euler Formula is A-stable. 

Therefore, according to Definition 2, the method will be also L-stable when (22) holds. It is 

immediately seen that both terms in the right-hand-side of (30) tend to zero as  . Thus, the 

combined method is L-stable, which completes the proof of the theorem.      ■ 

 

Remark 6: The fact that the combination of the Richardson Extrapolation and the Backward Euler 

Formula is A-stable is demonstrated geometrically in Fig 9.5 on p. 151 in Hairer and Wanner 

(1991) by plotting the stability region of the combined method. An analytic proof of the A-stability 

of the combined method is given in the first part of Theorem 4. The ideas on which the proof is 

based are rather general and can successfully be used in connection with more complicated 

numerical methods (research results related to a class of numerical methods for solving systems of 

ODEs will be published in the near future). It should also be stressed here that the final result 

proved in the second part of Theorem 4 shows that the combined method has much better stability 

properties: not only is it A-stable, but L-stability is also proved.      ■ 

 

 

7. Numerical experiments 
 

Many numerical experiments were performed in order to show that (a) it is possible to improve the 

accuracy of the numerical results when the Richardson Extrapolation is used (also if very difficult 

non-linear atmospheric chemistry schemes are to be treated), (b) the computations can become 

unstable when the combination of the Trapezoidal Rule and the Active Richardson Extrapolation is 

used, (c) the application of the Active Richardson Extrapolation with the Backward Euler Formula 

is leading to a stable computational process, (d) the computing time can sometimes be reduced 

considerably by utilizing a specially designed sparse matrix solver and (e) the computational cost of 

the Richardson Extrapolation is much less than that of the corresponding underlying method when 

a prescribed accuracy has to be achieved. 

 

 

7.1. The atmospheric chemistry scheme used in the experiments 

 

An atmospheric chemistry scheme containing 56s   species has been selected and used in the 

experiments results of which will be presented below. Such schemes are used in several well-

known environmental models (for example, in the EMEP models, Simpson, 2003, and UNI-DEM, 

Zlatev and Dimov, 2006). The atmospheric chemistry scheme is described mathematically as a 

non-linear system of type (1) containing 56  ODEs. This numerical example is extremely difficult 

because (a) it is badly scaled and (b) some chemical species vary very quickly during the periods of 

changes from day-time to night-time and from night-time to day-time. 
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The badly scaling is demonstrated by the results given in Table 1, where the maximal, minimal and 

mean values of the concentrations of several chemical species during a time-interval of 24 hours 

are given. It is clearly seen that while some chemical species (as nitrogen di-oxide and ozone) does 

not vary too much, other chemical species vary in a very wide range (sometimes by many orders of 

magnitude; see also Fig. 3 and Fig. 4). 

 

The steep gradients of some of the concentrations in the critical parts of the time-interval (changes 

from day-time to night-time and from night-time to day-time) are demonstrated in the plots drawn 

in Fig. 3 and Fig. 4. The concentrations of some species are growing during the day (an example is 

given in Fig. 3), while other concentrations are growing during the night (see Fig. 4). 

 
Table 1: Maximal, minimal and mean values of concentrations of some chemical species during a time-period of 24 

hours. The units are numbers of molecules per cubic centimetre. 

 

Species Maximal value Minimal value Mean value 

NO  2.5E+09 8.4E+04 5.5E+08 

2NO  2.4E+10 3.7E+08 4.3E+09 

Ozone 1.8E+12 1.4E+12 1.5E+12 

OH 2.3E+07 3.3E+04 6.3E+06 

Isoprene 3.7E+09 1.1E+06 1.5E+09 

 

 

7.3. Organization of the computations 

 

The atmospheric chemistry scheme discussed in the previous sub-section was handled on the time-

interval    129600,43200b,a  . The value 43200a   corresponds to twelve o'clock at the noon, 

while 129600b   corresponds to twelve o'clock on the next day. Thus, the length of the time-

interval is 24  hours ( 86400 seconds) and it contains important changes from day-time to night-

time and from night-time to day-time. 

 

Several sequences of 19  runs have been treated in different experiments. In each experiment the 

first run is performed by using 168N   time-steps (this means that the time-stepsize is 

285.514h   seconds). After that the stepsize h  was halved eighteen times (this implies that the 

number N  of time-steps is doubled in the beginning of every successive run). The behavior of the 

errors in each sequence of 19  runs was studied. The error made in an arbitrary run is measured in 

the following way. Denote: 

 

,
)0.1,y(max

yy
maxERR)50(

ref

k,m

ref

k,mk,m

56,,2,1k
m 












 


 
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Figure 3: Diurnal variation of the concentrations of the chemical species OP . 

 

 

 

Figure 4: Diurnal variation of the concentrations of the chemical species
3NO . 
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where k,my  and ref

k,my  are the calculated value and the reference solution of the th
k  chemical 

species at time 
00m hmtt   (where 168,,2,1m   and 285.514h0   is the time-stepsize that 

has been used in the first run). The reference solution was calculated by using a three-stage fifth-

order L-stable fully implicit Runge-Kutta algorithm (see Butcher, 2003 or Hairer and Wanner, 

1991) with  528482304N   and 61310000.0href  . It is clear from the above discussion that only 

the values of the reference solution at the grid-points of the coarsest grid used in the first run have 

been stored and applied in the evaluation of the error (it is, of course, also possible to store all 

values of the reference solution, but such an action will increase tremendously the storage 

requirements). 

 

The global error made during the computations is estimated by 

 

 .ERRmaxERR)51( m
168,,2,1m 

  

 

The crucial task is to eliminate the influence of the rounding errors when the quantities involved in 

(50) and (51) are calculated. Normally this task can easily be accomplished when double precision 

arithmetic is used. Unfortunately, this is not true when the atmospheric chemistry scheme is 

handled. The difficulty can be explained as follows. If the problem is stiff, and the atmospheric 

chemistry scheme is, as mentioned above, a stiff non-linear system of ODEs, then implicit 

numerical methods are to be used. The application of such numerical methods leads to the solution 

of systems of non-linear algebraic equations, which are normally treated at each time-step by the 

Newton Iterative Method (to be discussed in the next sub-section). This means that long sequences 

of systems of linear algebraic equations are to be handled. Normally this does not cause great 

problems. However, the atmospheric chemistry schemes are very badly scaled and the condition 

numbers of the involved matrices are very large. It was found (by applying an LAPACK subroutine 

for finding eigenvalues and condition numbers from Anderson et al., 1992) that the condition 

numbers of the matrices involved in the Newton Iterative Process vary in the interval

 12E27.9,08E56.4  . Simple application of error analysis arguments from Wilkinson (1963) 

indicate that there is a danger that the rounding errors will affect the fourth significant digit of the 

approximate solution on most of the existing computers when double precision arithmetic is used. 

Therefore, all computations reported in the next sub-sections were performed by using quadruple-

precision (i.e. by using REAL*16 declarations for the real numbers and, thus, about 32-digit 

arithmetic) in order to eliminate the influence of the rounding errors affecting the first 16 

significant digits of the computed approximate solutions.    

 

 

7.4. Stopping criteria 

 

Denote by J  the Jacobian matrix of the vector function f  from (1). The application of implicit 

methods in the solving (1), which is necessary when the problem is stiff, leads to the solution of a 

long sequence of non-linear systems of algebraic equations. The Newton Iterative Procedure is 

often used in the solution of these systems. Assume that the computations at step n  are to be 

carried out. Then a linear system of algebraic equations: 

 
k

n

k

n

k

n cy)JhI()52(   
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has to be solved at the th
k  step of the Newton Iterative Procedure. The constant   depends on the 

particular method for solving systems of ODEs ( 1 for the Backward Euler Formula, while 

5.0  when the Trapezoidal Rule is selected). Vector k

nc  depends also on the numerical method 

for solving ODEs: )y,t(fhyyc
k

nn1n

1k

n

k

n  

  for the Backward Euler Formula and 

 )y,t(f)y,t(fh5.0yyc
k

nn1n1n1n

1k

n

k

n  

  for the Trapezoidal Rule. The current 

approximation of the solution of (1) is updated by 

 

.yyy)53(
k

n

1k

n

k

n    

 

Normally, a Modified Newton Iterative Procedure in which k

nJhI   is replaced by some 

approximation j

mA  is used. Matrix j

mA  is as a rule obtained at iteration j  during some time-step 

nm  .The order of the Modified Newton Iterative Procedure is one, while the classical Newton 

Iterative Procedure carried out by (52) – (53) is of order two (at least when the starting 

approximation is sufficiently close to the exact solution; see Kantorovich and Akilov, 1964, or 

Zlatev, 1981). This will as a rule lead to an increase of the number of iterations when the Modified 

Newton Iterative Procedure is used. On the other hand, the number of matrix factorizations is 

normally reduced substantially when the Modified Newton Iterative Procedure is used and this 

results as a rule in reduction of the computing time. 

 

It is important to stop correctly the iterative process defined by (52) and (53). Assume that the 

Backward Euler Formula is used directly and that the th
i  job mentioned in the previous sub-section, 

i.e.  19,,2,1i  , is to be treated. Consider the quantities: 

 

 
  .10,10maxACCUR,

0.1,ymax

y
EST)54(

282i

k

n

k

n

n




  

 

The iterative process carried out at time step n  is stopped when nEST  becomes less than ACCUR 

and  ny  is set to be equal to the last iterate k

ny  when this happens. It should be mentioned here that 

sometimes it is desirable to ensure that the stopping criterion used in the solution of the non-linear 

systems of algebraic equations will have no influence on the convergence properties of the selected 

numerical methods for solving systems of ODEs. It is necessary to use much smaller values of  

ACCUR if this is the case. 
28

10ACCUR
  was used in the calculation of the results presented in 

Table 2 – Table 5 and in Table 7. This choice (together with the fact that quadruple precision is 

used in the computations) guarantees that neither the stopping criterion used in the Newton Iterative 

Procedure nor the rounding errors would affect the convergence of the numerical method for 

solving systems of ODEs when the experiments related to Table 2 – Table 5 and Table 7 were run. 

 

Assume that ih  is the time-stepsize used in the th
i  run. Consider some time-step n . If the Newton 

Iterative Procedure is not convergent or if it is slowly convergent then the time-stepsize is reduced 

by a factor of two. This could happen several times at a given time-step. The remaining part of the 

interval  
n1n t,t   is calculated by using the reduced time-stepsize, however, the computations at the 

next time-step 1n  are started with a time-stepsize ih  (i.e. calculations with a reduced time-



 17 

stepsize are carried out only when there are difficulties with the convergence of the Newton 

Iterative Procedure). 

 

 

7.5. Instability of the Active Richardson Extrapolation when the Trapezoidal Rule is used 

 

Assume that the Trapezoidal Rule is used. One should expect the Passive Richardson Extrapolation 

to be stable (Theorem 2), while the Active Richardson Extrapolation will in general lead to unstable 

computations (Theorem 3). Many experiments performed with the atmospheric chemistry scheme 

demonstrate the validity of these two statements. Some of the obtained results are given in Table 2. 

 

Several important conclusions can be drawn from the results shown in Table 2 (it should be 

mentioned here that many other runs were also performed and the conclusions were similar): 

 The order of the Trapezoidal Rule is two. Therefore, it should be expected that doubling the 

number N  of time-steps (which leads to a decrease of the time-stepsize 

N/86400N/)43200129600(h   by a factor of two) will in general result in an 

improvement of the accuracy by a factor of four. It is seen that in the beginning this is the case. 

However, after the seventh run the rate of convergence is shifting from four to two. It is not 

clear why the rate of convergence is deteriorated. 

 The application of the Active Richardson Extrapolation with the Trapezoidal Rule leads to 

unstable computations. This is clearly a consequence of Theorem 2. It is only necessary to 

explain here how the instability is detected. Two stability checks are carried out. The first check 

is based on monitoring the norm of the calculated approximate solutions: if this norm becomes 
10

10  times the norm of the initial vector, then the computations are stopped and the 

computational process is declared to be unstable. The second check is based on the convergence 

of the Newton Iterative Process. It was mentioned in the previous sub-section that if this 

process is not convergent or very slowly convergent at some time-step n , then the stepsize h  is 

halved. This can happen several times at time-step n  . If the reduced time-stepsize become less 

than h10
5 , then the computational process is stopped and declared to be unstable. If the time-

stepsize has been reduced at time-step n , then the remaining calculations in the interval from 

1nt   to nt  are performed with the reduced time-stepsize (with the reduced time-stepsizes if the 

time-stepsize has been reduced several times), however an attempt is carried out to perform the 

next time-step 1n  (i.e. to proceed from nt  to 1nt  ) with the time-stepsize 

N/86400N/)43200129600(h   used in the current run. 

 The order of the Passive Richardson Extrapolation with the Trapezoidal Rule is three. 

Therefore, it should be expected that doubling the number N  of time-steps, which leads to a 

decrease of the time-stepsize N/86400N/)43200129600(h   by a factor of two, will in 

general result in an improvement of the accuracy by a factor of eight. It is seen from Table 2 

that this is not the case (excepting perhaps the first three runs). However, it is also seen that the 

Passive Richardson Extrapolation with the Trapezoidal Rule gives consistently more accurate 

results than those obtained when the Trapezoidal Rule is applied directly. 
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Table 2: Numerical results obtained in 19 runs of (a) the direct implementation of the Trapezoidal Rule, (b) the Active 

Richardson Extrapolation with the Trapezoidal Rule and (c) the Passive Richardson Extrapolation with the Trapezoidal 

Rule are given. The error obtained by (51) is given in the columns under “Accuracy”. The ratios of two successive 

errors are given in the columns under “Rate”.  “Unstable” means that the code detected that the computations are not 

stable, while “n.a.” stands for not applicable.  

 

 

Job 

Number 

 

Number 

of steps 

Direct 

Implementation 

Richardson Extrapolation 

Active Passive 

Accuracy Rate Accuracy Rate Accuracy Rate 

1 168 3.605E-01 - Unstable n.a. 4.028E-02 - 

2 336 7.785E-02 4.631 Unstable n.a. 3.246E-03 12.407 

3 672 1.965E-02 3.961 Unstable n.a. 1.329E-03 2.443 

4 1344 4.915E-03 3.998 Unstable n.a. 1.462E-04 9.091 

5 2688 1.228E-03 4.001 Unstable n.a. 5.823E-05 2.510 

6 5376 3.071E-04 4.000 Unstable n.a. 3.765E-05 1.547 

7 10752 7.677E-05 4.000 Unstable n.a. 2.229E-05 1.689 

8 21504 2.811E-05 2.731 Unstable n.a. 1.216E-05 1.833 

9 43008 1.615E-05 1.741 Unstable n.a. 6.300E-06 1.930 

10 86016 8.761E-06 1.843 Unstable n.a. 3.188E-06 1.976 

11 172032 4.581E-06 1.912 Unstable n.a. 1.600E-06 1.993 

12 344064 2.345E-06 1.954 Unstable n.a. 8.007E-07 1.998 

13 688128 1.187E-06 1.976 Unstable n.a. 4.005E-07 1.999 

14 1376256 5.970E-07 1.988 Unstable n.a. 2.002E-07 2.000 

15 2752512 2.994E-07 1.994 Unstable n.a. 1.001E-07 2.000 

16 5505024 1.499E-07 1.997 Unstable n.a. 5.005E-08 2.000 

17 11010048 7.503E-08 1.998 Unstable n.a. 2.503E-08 2.000 

18 22020096 3.753E-08 1.999 Unstable n.a. 1.252E-08 2.000 

19 44040192 1.877E-08 2.000 Unstable n.a. 6.257E-09 2.000 

 

 

7.6. Using the Richardson Extrapolation with the Backward Euler Formula 

 

Assume that the Richardson Extrapolation is used together with Backward Euler Formula. Both the 

active and the passive implementation of the Richardson Extrapolation should be stable in this case 

(Theorem 4). The results in Table 3 show clearly that the stability is preserved. The following 

conclusions can additionally be drawn from the results in Table 3 as well as from the results 

obtained in several other runs. 

 The order of the Backward Euler Formula is one. Therefore, it should be expected that doubling 

the number N  of time-steps (which leads to a decrease of the time-stepsize 

N/86400N/)43200129600(h   by a factor of two) will in general result in an 

improvement of the accuracy by a factor approximately equal to two. It is seen that this is the 

case for all eighteen runs after the first one.  

 The application of the Active Richardson Extrapolation with the Backward Euler Formula 

leads, as predicted by Theorem 3, to stable computations. The order of the combined method is 

two and it should be expected that doubling the number N  of time-steps will in general lead to 

an improvement of the accuracy by a factor approximately equal to four. It is seen that the 

Active Richardson Extrapolation behaves as a numerical method of order two when it is 

combined with the Backward Euler Formula. 



 19 

 The order of the combination of the Passive Richardson Extrapolation with the Backward Euler 

Formula should also be two and it is seen that the combined method behaves as a second-order 

numerical method.  

 
Table 3: Numerical results obtained in 19 runs of (a) the direct implementation of the Backward Euler Formula, (b) the 

Active Richardson Extrapolation with the Backward Euler Formula and (c) the Passive Richardson Extrapolation with 

the Backward Euler Formula are given. The error obtained by (51) is given in the columns under “Accuracy”. The 

ratios of two successive errors are given in the columns under “Rate”.  

 

 

Job 

Number 

 

Number 

of steps 

Direct 

Implementation 

Richardson Extrapolation 

Active Passive 

Accuracy Rate Accuracy Rate Accuracy Rate 

1 168 2.564E+00 - 3.337E-01 - 3.337E-01 - 

2 336 1.271E+00 2.017 1.719E-01 1.942 2.981E-01 1.120 

3 672 6.227E-01 2.041 5.473E-02 3.140 2.526E-02 11.801 

4 1344 3.063E-01 2.033 7.708E-03 7.100 6.727E-03 3.749 

5 2688 1.516E-01 2.020 1.960E-03 3.933 1.739E-03 3.874 

6 5376 7.536E-02 2.011 5.453E-04 3.594 4.417E-04 3.937 

7 10752 3.757E-02 2.006 1.455E-04 3.749 1.113E-04 3.969 

8 21504 1.876E-02 2.003 3.765E-05 3.864 2.793E-05 3.984 

9 43008 9.371E-03 2.002 9.583E-06 3.929 6.997E-06 3.992 

10 86016 4.684E-03 2.001 2.418E-06 3.963 1.751E-06 3.996 

11 172032 2.341E-03 2.000 6.072E-07 3.981 4.379E-07 3.998 

12 344064 1.171E-03 2.000 1.522E-07 3.991 1.095E-07 3.999 

13 688128 5.853E-04 2.000 3.809E-08 3.995 2.844E-08 3.850 

14 1376256 2.926E-04 2.000 9.526E-09 3.998 7.266E-09 3.914 

15 2752512 1.463E-04 2.000 2.382E-09 4.000 1.836E-09 3.957 

16 5505024 7.315E-05 2.000 5.951E-10 4.002 4.613E-10 3.981 

17 11010048 3.658E-05 2.000 1.484E-10 4.011 1.153E-10 4.001 

18 22020096 1.829E-05 2.000 3.665E-11 4.047 2.853E-11 4.042 

19 44040192 9.144E-05 2.000 8.727E-12 4.200 6.796E-12 4.197 

 

 

7.7. Combining the Richardson Extrapolation with the Marchuk-Strang Splitting Procedure 

 

Consider the following initial value problem: 

 

  ,1s,f,f,y,ab,b,at,)y,t(f)y,t(f
dt

dy
)55(

s

2

s

1

s

21   

 

instead of (1). The Active Richardson Extrapolation can be combined with the Backward Euler 

Formula and the Marchuk-Strang Splitting Procedure (about this splitting procedure see Marchuk, 

1968, Strang, 1968, Dimov et al., 2004) by performing successively three computational steps: 

 

Step 1: Use a large time-stepsize h  to calculate an approximation nz  of )t(y n  starting with the 

approximation 1ny   obtained at the previous time-step: 

 

,)z,t(fh5.0yz)56(
)1(

nn11n

)1(

n  
 

 

,)z,t(fhzz)57(
)2(

nn2

)1(

n

)2(

n   
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,)z,t(fh5.0zz)58(
)3(

nn1

)2(

n

)3(

n   

 

.zz)59(
)3(

nn                   ■ 

 

Step 2: Perform two small time-steps with a time-stepsize h5.0  to calculate a second 

approximation nw  to )t(y n  starting again with the approximation 1ny   obtained at the previous 

time-step: 

 

,)w,t(fh25.0yw)60(
)1(

5.0nn11n

)1(

5.0n    

 

,)w,t(fh5.0ww)61(
)2(

5.0nn2

)1(

5.0n

)2(

5.0n    

 

,)w,t(fh25.0ww)62(
)3(

5.0nn1

)2(

5.0n

)3(

5.0n    

 

,)w,t(fh25.0ww)63(
)1(

nn1

)3(

5.0n

)1(

n    

 

,)w,t(fh5.0ww)64(
)2(

nn2

)1(

n

)2(
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,)w,t(fh25.0ww)65(
)3(

nn1

)2(

n

)3(

n   

 

.ww)66(
)3(

nn                  ■ 

 

Step 3: Apply the formula for computing the Richardson Extrapolation with 1p   to compute an 

improved approximation ny  of )t(y n : 

 

.zw2y)67( nnn             ■ 

 

Note that everything is prepared for the computation of the next approximation 1ny   after the 

performance of the calculations with (56) – (67). It should also be mentioned here that the 

computational process based on (56) – (67) can obviously be started, because it is assumed that an 

initial value vector )a(yy0   is given. 

 

Remark 7: Combining the Passive Richardson Extrapolation with the Backward Euler Formula 

and the Marchuk-Strang Splitting Procedure can be achieved by replacing 1ny   with 1nz   in Step 1 

and with 1nw   in Step 2.              ■ 

 

Remark 8: The Richardson Extrapolation and the Marchuk-Strang Splitting Procedure can also be 

combined with the Trapezoidal Rule: one has to apply the Trapezoidal Rule instead of the 

Backward Euler Formula in the right-hand sides of (56) – (58) and (60) – (65). Moreover, it is more 

appropriate to use the Richardson Extrapolation with 2p   which will give 
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3

zw4
y)68( nn

n


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instead of (67).               ■ 

 

Remark 9: The Marchuk-Strang Splitting Procedure can be implemented directly (i.e. no 

Richardson Extrapolation). The needed formulae can be obtained from (56) - (59) by replacing z  

with y .       ■ 

 

Some results obtained by using the combination: the Richardson Extrapolation + the Marchuk-

Strang Splitting Procedure + the Trapezoidal Rule are given in Table 4. Results obtained when the 

Trapezoidal Rule is replaced by the Backward Euler Formula are given in Table 5. The same 

numerical example as in the previous sub-section is used. The right-hand-side of (1) is split into 

two functions, see (55), by using the following rules: (a) all species that react with ozone are 

combined in the first component 1f , while the remaining species form 2f . 

 

Table 4: Numerical results obtained in 19 runs of (a) the direct implementation of the Marchik-Strang Splitting 

Procedure and the Trapezoidal Rule, (b) the Active Richardson Extrapolation with the Marchik-Strang Splitting 

Procedure and the Trapezoidal Rule and (c) the Passive Richardson Extrapolation with the Marchik-Strang Splitting 

Procedure and the Trapezoidal Rule are given. The error obtained by (51) is given in the columns under “Accuracy”. 

The ratios of two successive errors are given in the columns under “Rate”.  “Unstable” means that the code detected 

that the computations are not stable, while “n.a.” stands for not applicable.  

 

 

Job 

Number 

 

Number 

of steps 

Direct 

Implementation 

Richardson Extrapolation 

Active Passive 

Accuracy Rate Accuracy Rate Accuracy Rate 

1 168 2.230E+00 - Unstable n.a. 6.826E-01 - 

2 336 1.919E-01 11.626 Unstable n.a. 2.594E-01 2.631 

3 672 5.531E-02 3.469 Unstable n.a. 8.970E-02 2.892 

4 1344 1.360E-02 4.068 Unstable n.a. 3.266E-02 2.746 

5 2688 3.711E-03 3.664 Unstable n.a. 1.312E-02 2.489 

6 5376 9.472E-04 3.918 2.440E-04 - 5.757E-03 2.280 

7 10752 2.384E-04 3.973 4.119E-05 5.922 2.677E-03 2.150 

8 21504 5.980E-05 3.987 8.548E-06 4.819 1.289E-03 2.078 

9 43008 1.501E-05 3.983 3.187E-06 2.682 6.317E-04 2.040 

10 86016 4.578E-06 3.279 1.600E-06 1.992 3.128E-04 2.020 

11 172032 2.344E-06 1.953 8.007E-07 1.998 1.556E-04 2.010 

12 344064 1.187E-06 1.976 4.005E-07 1.999 7.760E-05 2.005 

13 688128 5.970E-07 1.988 2.002E-07 2.000 3.875E-05 2.003 

14 1376256 2.994E-07 1.994 1.001E-07 2.000 1.936E-05 2.001 

15 2752512 1.499E-07 1.997 5.006E-08 2.000 9.679E-06 2.000 

16 5505024 7.503E-08 1.998 2.503E-08 2.000 4.839E-06 2.000 

17 11010048 3.753E-08 1.999 1.252E-08 2.000 2.419E-06 2.000 

18 22020096 1.877E-08 2.000 6.257E-09 2.000 1.210E-06 2.000 

19 44040192 9.385E-09 2.000 3.129E-09 2.000 6.051E-7 2.000 

 

 

Three conclusions can be drawn by studying carefully the results shown in Table 4: 

 If the Richardson Extrapolation is not used, then the order of the combined method (the 

Marchuk-Strang Splitting Procedure + the Trapezoidal Rule) is two. Therefore, it should be 

expected that doubling the number N  of time-steps will in general result in an improvement of 
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the accuracy by a factor of four. It is seen that this expectation is fulfilled (excepting the results 

after the tenth run).  

 The application of the Active Richardson Extrapolation with the Marchuk-Strang Splitting 

Procedure and the Trapezoidal Rule causes instability in the first five runs, (this is a 

consequence of Theorem 2), but after that the computations are stable and the convergence rate 

is pretty good (in runs 6 and 7 at least). The combined method is of order three. This means that 

doubling the number of time-steps should result in an improvement of the accuracy by a factor 

of eight. This factor is not achieved, but in runs 7 and 8 the factors are considerably larger than 

four. 

 The order of the Passive Richardson Extrapolation with the Marchuk-Strang Splitting Procedure 

and the Trapezoidal Rule is also three. Therefore, it should be expected that doubling the 

number N  of time-steps will in general lead to an improvement of the accuracy by a factor of 

eight. It is seen from Table 4 that this is not the case. In fact the convergence rate is rather poor: 

the combined method behaves as a first-order method. It is not very clear why this is so. 

 
Table 5: Numerical results obtained in 19 runs of (a) the direct implementation of the Marchik-Strang Splitting 

Procedure and the Backward Euler Formula, (b) the Active Richardson Extrapolation with the Marchik-Strang Splitting 

Procedure and the Backward Euler Formula and (c) the Passive Richardson Extrapolation with the Marchik-Strang 

Splitting Procedure and the Backward Euler Formula are given. The error obtained by (51) is given in the columns 

under “Accuracy”. The ratios of two successive errors are given in the columns under “Rate”.   

 

 

Job 

Number 

 

Number 

of steps 

Direct 

Implementation 

Richardson Extrapolation 

Active Passive 

Accuracy Rate Accuracy Rate Accuracy Rate 

1 168 2.456E+00 - 2.133E-01 - 8.484E-01 - 

2 336 1.011E+00 2.430 1.090E-01 1.957 2.333E-01 3.636 

3 672 4.901E-01 2.062 4.465E-02 2.441 6.850E-02 3.407 

4 1344 2.389E-01 2.051 1.677E-02 2.662 3.315E-02 2.066 

5 2688 1.175E-01 2.033 6.512E-03 2.576 1.621E-02 2.046 

6 5376 5.819E-02 2.019 2.559E-03 2.545 7.940E-03 2.041 

7 10752 2.819E-02 2.010 1.059E-03 2.417 3.893E-03 2.040 

8 21504 1.444E-02 2.005 4.168E-03 2.540 1.913E-03 2.034 

9 43008 7.208E-03 2.001 1.543E-04 2.702 9.449E-04 2.025 

10 86016 3.602E-03 2.001 5.253E-05 2.937 4.687E-04 2.016 

11 172032 1.800E-03 2.001 1.651E-05 3.183 2.333E-04 2.009 

12 344064 9.000E-04 2.000 4.865E-06 3.393 1.164E-04 2.005 

13 688128 4.499E-04 2.000 1.439E-06 3.381 5.809E-04 2.003 

14 1376256 2.250E-04 2.000 3.341E-07 3.822 2.905E-04 2.001 

15 2752512 1.125E-04 2.000 8.554E-08 3.906 1.552E-04 2.000 

16 5505024 5.623E-05 2.000 2.165E-08 3.523 7.258E-05 2.000 

17 11010048 2.812E-05 2.000 5.445E-09 3.975 3.629E-05 2.000 

18 22020096 1.406E-05 2.000 1.365E-09 3.989 1.814E-05 2.000 

19 44040192 7.030E-06 2.000 3.391E-10 3.999 9.071E-06 2.000 

 

Three conclusions can be drawn by studying carefully the results shown in Table 5: 

 The order of the combined method (the Marchuk-Strang Splitting Procedure + the Backward 

Euler Formula) is one, because the error from the first-order Backward Euler Formula will be 

dominating over the error from the second-order Marchuk-Strang Splitting Procedure. 

Therefore, it should be expected that doubling the number N  of time-steps will in general 
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result in an improvement of the accuracy by a factor of two. It is seen that this expectation is 

fulfilled.  

 The application of the Active Richardson Extrapolation with the Marchuk-Strang Splitting 

Procedure and the Backward Euler Formula leads to a second-order numerical method. One 

should expect factor “Rate” to be approximately four. It is clearly seen that “Rate” is increased 

when the number of time-steps grows and the method behaves as a second-order numerical 

method at the end of computations.  

 The order of the Passive Richardson Extrapolation with the Marchuk-Strang Splitting 

Procedure and the Backward Euler Formula should also be two. Therefore, it should be 

expected that doubling the number N  of time-steps will in general lead to an improvement of 

the accuracy by a factor of four. It is seen from Table 5 that this is not the case. In fact the 

convergence rate is rather poor: the combined method behaves as a first-order method 

(excepting the first two runs). It is not very clear why this is so. 

 

 

7.8. Treatment of linear systems of algebraic equations 

 

The stiffness of the atmospheric chemistry scheme requires the use of implicit methods for solving 

systems of ODEs and, thus, solving linear systems of algebraic equations, which is a rather costly 

procedure. The performance of five different algorithms for solving linear systems of algebraic 

equations was tested. A short description of these algorithms is given below: 

 DENSE: Direct method (based on the Gaussian Elimination) is used in the solution of (52) 

and the sparsity of the Jacobian matrix is not exploited. LAPACK routines (Anderson et al., 

1992) for solving linear systems with dense coefficient matrices are called in this algorithm. 

 SPARSE-0: Regular sparse matrix technique based on the pivotal strategy introduced in 

Zlatev (1980) is used. The algorithm is fully described in Zlatev et al. (1981) and Zlatev 

(1991). Other sparse matrix codes, as those applied in Duff et al. (1986), Demmel (1997) or 

Demmel et al. (1999a, 1999b), can also be applied. Comprehensive comparisons reported in 

Zlatev (1980), Zlatev et al. (1982), Zlatev and Dimov (2006) show that the algorithms from 

Zlatev et al. (1981) are at least competitive with the other algorithms. 

 SPARSE-1: As SPARSE-0, but it is allowed to drop (to replace by zero) small elements 

(both before the start of the Gaussian Elimination and during every stage of the Gaussian 

Elimination).  The implementation of the dropping device is based on the following rule. 

Consider stage k  ( 1s,,1,0k   ) of the Gaussian Elimination and the active part of the 

matrix at this stage containing elements k

ija  with s,,1ks,ksj,i  . Let k

ija  be an 

arbitrary element in the active part of the matrix at stage k  and denote by k

ia  the largest in 

absolute value non-zero element in the active part of row i  at stage k  of the Gaussian 

Elimination. If RELTOLa/a
k

i

k

ij   is satisfied, then 
k

ija  is dropped (not used in the further 

computations). 1.0RELTOL  was used in this paper. An attempt to regain the accuracy 

lost because of the dropping procedure is carried out by using iterative refinement in an 

inner loop within any iteration of the Newton method. The iterative refinement algorithm 

used in SPARSE-1 was introduced in Zlatev (1982); see also Zlatev (1991). Other iterative 

methods were also tried (the methods are based on preconditioned conjugate gradient 
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techniques and discussed in detail in Gallivan et al., 2003, Zlatev and Dimov, 2006). It was 

found out that iterative refinement works very well for the atmospheric chemistry scheme. 

 SPARSE-2: As SPARSE-1, but no attempt is carried out to regain the accuracy lost during 

the Gaussian Elimination by performing iterative refinement. The application of this 

algorithm in solution of non-linear algebraic equations arising when implicit methods for 

solving stiff systems of ODEs are used can be considered as a Modified Newton Iterative 

Method in which the exact Jacobian matrix k

nJtI   (n  being the current time-step, while 

k  is the current iteration number) is replaced by some k

nJtIA  . It should be noted 

here that approximations of the Jacobian matrix are also applied in the previous three 

algorithms. This is a commonly used approach: the same Jacobian matrix and its 

factorization are kept as long as possible when stiff systems of ODEs are solved (see, for 

example, Shampine, 1993). In the previous three algorithms the exact Jacobian matrix is 

calculated and used when the Newton Iterative Procedure does not converge or is slowly 

convergent. The stepsize is reduced when this happens during the calculations with 

SPARSE-2. This means that some extra time-steps are occasionally carried out when 

SPARSE-2 is used, but the experiments indicate that this extra computing time is fully 

compensated by the fact that the inner loop performed at every time-step when SPARSE-1 

is used is skipped in SPARSE-2. 

 SPARSE-3: As SPARSE-2, but a special sparse code was developed and implemented in 

SPARSE-3.  This code has three major properties: (a) there are no loops, (b) no indirect 

addressing is used and (c) no integer arrays are applied. The algorithm is especially 

designed for the atmospheric chemistry scheme used in this paper and cannot directly be 

used in the treatment of other problems (while the previous four algorithms can be applied 

in the solution of any linear and sparse system of algebraic equations). SPARSE-3 is 

described in Zlatev and Dimov (2006). 

Numerical results, which were obtained when the Backward Euler Formula is used directly in the 

treatment of the atmospheric chemistry scheme, are given in Table 6. The following conclusions 

can be drawn by studying the results: 

 It was expected that the dense code would be competitive with the sparse codes, because the 

matrix is rather small. This is clearly not the case. The application of any of the four sparse 

codes leads to a very considerable reduction of the computing time. It should be mentioned 

here that the dense code was competitive with the sparse codes when a smaller atmospheric 

chemistry scheme (with 35s   instead of 56s  ) was used. The smaller chemistry scheme 

was developed by Gery et al. (1989). Results obtained by this scheme are given in 

Alxandrov et al. (1997). The computing time for the dense Gaussian elimination is 

proportional to the number )s(O
3  of arithmetic operations. It is difficult to evaluate the 

complexity of the sparse algorithms. A crude estimation can be obtained as follows. Denote 

by r  and c  the largest numbers of non-zero elements per row and per column respectively 

which appear in the active part of the matrix during the Gaussian Elimination. Then the 

number of arithmetic operations needed to solve the system of linear equations by sparse 

matrix technique can be evaluated by )scr(O . The term )scr(O  is, of course, an 

overestimation, but it allows us to explain why the sparse codes perform much better than 

the dense code when 56s  . The numbers of arithmetic operations grow roughly speaking 

linearly with s  when sparse codes are used (because as a rule both r  and c  do not vary too 
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much when s  is varied), while )s(O
3  is telling us that small changes of  s  will results in 

substantial changes of the computing time when the dense algorithm is used. 

 The specially designed for the atmospheric chemistry scheme code, SPARSE-3, performs 

rather well, but the two sparse codes SPARSE-0 and SPARSE-2, which are more general 

and can be used in many other situations related to the solution of non-linear systems of 

ODEs, are not performing too badly. In some cases, SPARSE-0 is performing even better 

than SPARSE-3.  

 The code SPARSE-1, where both an outer iteration loop (the Modified Newton Iterative 

Procedure in connection with the non-linear systems of algebraic equations that are to be 

handled at every time-step) and an inner iteration loop (iterative refinement has to be used 

in the solution of the linear system of algebraic equations at every iteration of the Modified 

Newton Iterative Procedure) are to be carried out, is not very efficient in comparison with 

the other two sparse codes, but it is still considerably better than the dense code. 

 
Table 6: Numerical results obtained in 19 runs with the Backward Euler Formula and five algorithms for the treatment 

of linear systems of algebraic equations are given in this table. The computing times, measured in seconds, are given in 

columns 3-7. The accuracy achieved when the SPARSE-3 algorithm is used is shown in the eighth column. 

 

Job  Steps DENSE SPARSE-0 SPARSE-1 SPARSE-2 SPARSE-3 Accuracy 

1 168 4.13 0.72 0.98 0.60 0.37 2.695E+00 

2 336 9.17 1.54 3.30 2.34 1.26 1.288E+00 

3 672 19.20 3.16 4.57 6.56 3.25 6.221E-01 

4 1344 38.79 6.39 9.03 12.00 7.54 3.063E-01 

5 2688 77.82 12.45 21.08 20.88 16.04 1.516E-01 

6 5376 156.59 34.93 41.41 36.40 31.82 7.536E-02 

7 10752 315.58 51.45 83.35 68.69 58.20 3.757E-02 

8 21504 632.55 101.86 158.27 122.21 106.46 1.876E-02 

9 43008 1267.63 203.30 304.56 230.09 196.42 9.371E-03 

10 86016 2537.99 405.28 594.22 435.84 362.47 4.684E-03 

11 172032 5077.83 806.23 1198.27 840.57 666.49 2.341E-03 

12 344064 10160.90 1609.74 2390.99 1619.54 1266.13 1.171E-03 

13 688128 20329.90 3214.60 4618.13 3102.74 2379.69 5.853E-04 

14 1376256 40668.82 6416.62 9344.34 6144.19 4621.48 2.926E-04 

15 2752512 81312.97 12778.42 18285.49 11949.24 9103.15 1.463E-04 

16 5505024 162612.03 25529.66 35826.72 23587.94 17884.93 7.315E-05 

17 11010048  50957.76 71087.69 45279.74 35657.37 3.658E-05 

18   22020048  101917.18 147284.36 90449.57 70930.82 1.829E-05 

19   44040192  203405.37  183371.06 139802.35 9.144E-06 

  

 The accuracy obtained when SPARSE-3 is run is given in the eighth column. The accuracy 

obtained with the other four codes is practically the same. Moreover, the accuracy shown in 

Table 6 is practically the same as that given in the third column of Table 3. The results 

presented in Table 3 are obtained by using a very stringent error 
28

10ACCUR
  (as 

mentioned above, in order to ensure that the convergence properties of the numerical 

method for solving systems of ODEs are not affected by the selected stopping criterion), 

while  282i
10,10maxACCUR

  is used to calculate the results presented in Table 6. 

The results indicate clearly that the use of a flexible value of ACCUR does not affect the 

accuracy of the results, but leads to considerable reductions of the computing times (which 

can be concluded by taking the results in the columns three and four of Table 7 and 
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comparing them with the corresponding results in Table 6). Therefore, the choice of a 

proper value for parameter  ACCUR seems to be very important. 

 

 

7.9. Checking the computational cost of the Richardson Extrapolation 

 

Three time-steps (one large and two small) with the underlying numerical method are necessary 

when one time-step of the Richardson Extrapolation is performed. This means that if the 

Richardson Extrapolation and the underlying numerical method are used with the same time-

stepsize, then the computational cost of the Richardson Extrapolation will be about three times 

greater than that of the underlying numerical method. In many practical situations this factor will be 

less than three, but considerably larger than two (because the number of Newton iterations needed 

for each of the two small time-steps will normally be smaller than the corresponding number for the 

large time-step). However, the use of the Richardson Extrapolation leads also to an improved 

accuracy of the calculated approximations. Therefore, it is not relevant (and not fair either) to 

compare the Richardson Extrapolation with the direct application of the underlying numerical 

method for solving systems of ODEs under the assumption that both devices are run with equal 

number of time-steps. It is much more relevant to investigate how much work is needed in order to 

achieve the same accuracy with each of the two devices. The computing times needed in the efforts 

to achieve prescribed accuracy are given in Table 7. If the desired accuracy is k
10

  (

11,,2,1k   ), then the computing time achieved in the first run in which the quantity 

ERR from (51) becomes less than k
10

  is given in Table 7. The stringent stopping criterion 

28
10ACCUR

  was used to obtain the results given in Table 7. 

 
Table 7: Comparison of the computational costs (measured by the CPU times given in seconds) needed to achieve 

prescribed accuracy in the cases where (a) the Backward Euler Formula is implemented directly, (b) the Active 

Richardson Extrapolation with the Backward Euler Formula is used and (c) the Passive Richardson Extrapolation with 

the Backward Euler Formula is applied. The computing times measured in seconds are given in the columns under 

“Accuracy”. The numbers of time-steps needed to obtain the desired accuracy are given in the columns under “Steps”.  

 

 

Desired accuracy 

of the solution 

Direct Implementation of the 

Backward Euler Formula 

Richardson Extrapolation 

Active Passive 

CPU time Steps CPU time Steps CPU time Steps 

[1.0E-01, 1.0E-02] 274 5376 304 672 307 672 

[1.0E-02, 1.0E-03] 862 43008 374 1344 378 1344 

[1.0E-03, 1.0E-04] 7144 688128 661 5376 661 5376 

[1.0E-04, 1.0E-05] 42384 5505024 1428 21504 1429 21504 

[1.0E-05, 1.0E-06] 265421 44040192 2240 43008 2240 43008 

[1.0E-06, 1.0E-07] Not achieved in the 19 runs 6386 172032 6398 172032 

[1.0E-07, 1.0E-08] Not achieved in the 19 runs 19834 688128 19885 688128 

[1-0E-08, 1.0E-09] Not achieved in the 19 runs 35237 1376356 35245 1376256 

[1.0E-09, 1.0E-10] Not achieved in the 19 runs 119791 5505024 119796 5505024 

[1.0E-10, 1.0E-11] Not achieved in the 19 runs 410087 22020096 410846 22020048 

[1.0E-11, 1.0E-12] Not achieved in the 19 runs 777872 44040192 778974 44040192 

 

Four conclusions can be drawn by studying the results shown in Table 7: 

 The direct use of the Backward Euler Formula is slightly more efficient with regard to the 

computing time than the two implementations of the Richardson Extrapolation when the desired 
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accuracy is very low ( ERR being less than 1
10

  and greater than 2
10

 ); compare the CPU 

times in the first row of Table 7. 

 Accuracy better than 6
10

  has not been achieved in the 19 runs with the Backward Euler 

Formula reported in Table 3, while even accuracy better than 11
10

  is achievable when the 

Richardson extrapolation is used (see lines 5-11 in Table 7). 

 The two implementations of the Richardson Extrapolation become much more efficient than the 

Backward Euler Formula when the accuracy requirement is increased (see the second, the third 

and the fourth lines of Table 7). If it desirable to achieve accuracy better than 3
10

 , then the 

computing time spent with the Richardson Extrapolation is more than ten times smaller than the 

corresponding computing time for the Backward Euler Formula (compare the CPU times on the 

third line of Table 7). The reduction is by a factor approximately equal to thirty if the desired 

accuracy is 4
10

  (see the fourth line in Table 7). 

 The major conclusion is that not only is the Richardson Extrapolation a powerful tool for 

improving the accuracy of the underlying numerical method, but it is also extremely efficient 

with regard to the computational cost (this being especially true when the accuracy requirement 

is not extremely low). 

 

 

8. Concluding remarks 
 

Several properties of the Richardson Extrapolations were studied in the previous sections of this 

paper. Some theorems related to the stability of the computational process were formulated and 

proved. Numerical results were given to demonstrate (a) the improvement of the accuracy by 

applying the Richardson Extrapolation and (b) the great savings in computing time achieved when 

a prescribed accuracy is required. 

 

There are still many open problems which will be studied in the near future. Three of the open 

problems are listed below: 

 It seems plausible to conjecture that Theorem 4 could be extended to any L-stable method for 

solving systems of ODEs (or, at least, for some other L-stable methods). 

 It is desirable to obtain some results for strongly stable numerical methods for solving systems 

of ODEs, i.e. for numerical methods with 1)(R   and   1)(Rlim   as   (see more 

details about the definition of strongly stable methods for systems of ODEs in Hundsdorfer and 

Verwer, 2003). 

 The comparison of the numerical results for the Active Richardson Extrapolation in Table 2 

with the corresponding results in Table 4 indicates that the splitting procedures have some 

stabilizing effect on the numerical results. It is interesting to try to prove in a rigorous way 

when such a property of the splitting procedures takes place. 
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